The role of data centers in an interconnected world

 

From storage evolution to digital revolution

“Internet Exchange Points,” comments  Gabriel Willigens, Head of the Business Unit DataLogistIX at Itenos, “live in data centers.” There’s a good reason for this: that’s where data lives. Today, data centers are the warehouses of the digital economy, providing a home not only for the data itself, but also for the platforms and applications that have become so ubiquitous in the modern world. And central to the seamless functioning of these applications and delivery of content is interconnection – which is why IXs like DE-CIX also make themselves at home in highly interconnected data centers in order to nurture digital ecosystems there.

But clearly, it hasn’t always been like that. Prehistoric data centers (those that existed long before anyone even thought of coining terms like “digital native”) were computer rooms located in company office space, housing – seen in retrospect – massively oversized and underpowered computers, and connected to nobody and nothing outside of the premises. It was a combination of the evolution of computing technology (not only miniaturization and transistor density, but also the capacity for computer resources to be shared amongst multiple users) and the increasing desire to connect networks with each other which together spawned the commercial Internet. With this, a new type of dedicated data center facility developed, along with new business cases for their operators. And so began the business of colocation – without which the Internet as it is could never have developed.

The co-dependent development of the Internet and data centers

To gain access to the Internet – today, as it was back then – connectivity is an essential precondition. In the mid-90s, with the advent of the World Wide Web, networks outside of the USA still needed to connect directly with the American backbone in order to access the new-fangled Internet. “An e-mail from one ISP to the other went to Washington and came back on the same line to be delivered to the provider next door. This was of course very expensive – a 2-Mbit direct route to US was a big thing. It was a privilege to have such a line, but costs were too high,” Harald A. Summa reminisces about the early days.

When DE-CIX first connected networks in Germany back in 1995, the first data center where the networks housed their networking equipment was a computer room in a disused post office in Frankfurt. But while connecting the first three German networks could be handled in such a space, it became necessary for the fledgling Internet Exchange to move to a dedicated colocation facility, as more and more networks wanted to connect their servers locally as well – so in 1999, DE-CIX moved to Interxion’s first Frankfurt data center, FRA 1. This was the beginning of a strong and mutually beneficial friendship, without which the Internet would not be what it is today.

The pioneering spirit of interconnection – no limits

Coming up to the turn of the millennium was a time of enormous growth in the market of data center services – companies that wanted to connect to the Internet but did not want to invest in their own in-house infrastructure began placing their servers in already functioning data centers, where the facilities could be shared between all tenants. The more companies and networks that accumulated within these data centers, the more attractive they became for other companies and networks to interconnect with. Digital ecosystems began to evolve, and the colocation market boomed. As Gerd Simon, at the time the Managing Director of Interxion in Germany, explains, “The mood was very energetic back then, there was a pioneering spirit – everything was possible. There were no limits. Everyone was looking for possibilities to develop their business, and looking for conversation and business partners in order to do that.”

Using DE-CIX as a way of then interconnecting networks not only within a building, but also between data centers, became a success story for the digital hub of Frankfurt – which has developed into one of the areas with the largest data center density anywhere in Europe.

Getting closer to the edge and increasingly interconnected

Certainly, the development of the colocation business model was not without its hiccups. With the bursting of the dotcom bubble in the early 2000s, these once flourishing colocation facilities emptied – the yawning white space in limbo as it waited for the hoped-for recovery. And bounce back it did; slowly at first, but with the emergence of the iPhone in 2007, a new form of Internet access demanded increasing infrastructure to feed a new generation of services to a willing world. Offering services for an increasingly mobile end user meant that networks needed to get closer to the user. This meant that networks needed to be connected with more data centers, and data centers needed to be connected with each other – and this needed to be done on both a global and a local scale.

The Internet was, after all, a global phenomenon. Local connectivity became the enabler for access to the world. Connecting to an Internet Exchange like DE-CIX functioned as a portal to the entire globe – it brought businesses to users, but it also brought users to these businesses.

From a refurbished office space to virtual infrastructure

From a couple of servers in a stand-alone rack, to containers for building modular data centers, through to purpose-built data centers offering managed IT services to SMEs, on to large colocation facilities with around 10,000 square meters of white space (equivalent of nearly 2 football fields filled with racks of servers); and onwards and upwards to major data center campuses and hyperscaler data centers offering upwards of a million square meters of computing space (in which, for example, the major platform providers and cloud service providers run their services). The variety of sizes, designs, and purposes that all fall under the term “data center” almost belies definition.

Datacenter-infographic-decix

And going beyond these, data centers are taking on new conceptual forms. On the one hand, there are several initiatives seeking to federate a wide variety of data centers and services to create a virtual, open, neutral, and distributed cross-border infrastructure. In so doing, quality assurance and compliance requirements are being addressed, to enable customers simplified and secure control over their processes and their own data in the cloud, as well as data governance and interoperability, to gain the necessary flexibility for emerging digital services like AI. One example of such an initiative is the European project GAIA-X.

On the other hand, we see the emergence of edge data centers – highly localized, miniaturized processing capabilities to provide almost real-time responses and so enabling scenarios like autonomous transportation. Thus, the concept of the data center has always evolved alongside its potential to be used for the coming generations of digital services and digital business.

In the evolution of the data center as a building – from an office space in the early days, to refurbished commercial space, to purpose-built buildings, to modular containers on the one hand and hyperscalers on the other, and through to the minimalistic concepts now evolving in the edge data center space – land has also played a key role. Property owners and developers even in the late 1990s began to realize that a building with connectivity was more valuable for companies wanting to get online. Connectivity started to become a defining element of commercial property, and with this, digital had begun to have a real and lasting impact on the analog world.

The data center as mission-critical for companies, the cloud, and the Internet

By the second decade of the digital millennium, demand for data center space had developed radically, and data center operators realized that refurbished standard buildings no longer offered them what they needed to provide a modern service. Concepts like security, accessibility, and reliability were becoming business critical for their customers – from startups to global enterprises – and therefore also for the data centers themselves. So a new industry developed in the design and construction of new, purpose-built data centers.

In the early 2010s, the data center industry began a process of professionalization. Designs began to offer fail-safes against potential down-time and single points of failure, and classification systems began to offer potential customers a rating system on which to base their IT outsourcing decisions. Designs ensured redundancy in terms of connectivity and power. Sites were chosen for their proximity to other networks, to fiber, to power stations, and for their distance from geographical, environmental, and structural dangers.

This last point hinges on the fact that the analog world can also have a significant impact on the digital world. Jens Prautzsch, Managing Director of Interxion in Germany, describes it thus: “If you enter a data center, go past the security, into the data rooms, you feel the heat, you feel the noise, and you think, wow, what is in there? And then if you have in mind all the services, the customers that are in there, the systems and platforms that are running there, you feel the responsibility. You understand how important it is that we do a great job.”

decix-infographic

 

Exploring the edges

The more interconnected data centers operating within close proximity to one another, the greater the interconnectivity gravity becomes, attracting more and more data center operators to build nearby, bringing more and more networks that want to access and participate in the increasingly dense ecosystems of digital hubs. The mushrooming interconnectivity in Frankfurt, for example, nicely illustrates the profound effect that digitalization has been having on our world for the last two decades. Without these ecosystems of data centers, the networks connected to them, and Internet Exchanges like those from DE-CIX interconnecting them, the Internet would not, and could not, have developed as it has.

The data center landscape of the future

So, where is the data center heading now? Well, probably in as many different directions as there are data center concepts today. The edge is a whole new territory to be explored, to be populated with sensors and processors and connected to fog and cloud computing solutions for further processing and storage. Looking in another direction, data center designers and hardware manufacturers have been engaged in an ongoing process of increasing energy efficiency – a trend which is set to continue well into the new decade. Here, not only is the infrastructure being designed to consume less power, and the heat generated in the data centers is being redirected into local heating networks, but data centers are being designed to operate in climatically opportune, but thoroughly unexpected places. Take, for example, mines, churches, or even underwater locations.

Whatever the future of data centers and the Internet as a whole may bring, DE-CIX will be there, together with our many data center and connectivity partners all over the world, providing the portal to the next generations of interconnection. Without these valued data center and connectivity partners – providing access to DE-CIX in more than 500 data centers, in over 80 countries, across four continents – without you, DE-CIX would not have a story to tell.

 

What is DDoS attack?

In computing, the most powerful weapon is the distributed denial-of-service attack (DDoS attack) is a digital-attack where the culprit attempts to make a machine or network resource unreachable to its end users by briefly or indefinitely interrupting services of a host connected to the Internet. This aim is to flood the website or computer with maximum traffic to the server/network then it can handle.

Types of DDoS attacks:

  1. Volume-based: As the name signifies, volume-based DDoS attacks rely on the volume of incoming traffic. This attack involves requests sent to the target system. If they can lade your website/system, the attack is successful. It is quite easy for attackers to attain their purpose. This form of attack could involve tens, hundreds or even thousands of system. It can be measured in bits per second.
  2. Application-based: In this type of attack, hackers use weakness in the web server software or application software that direct the webserver to decline or crash. A ubiquitous form of application-based attack requires sending limited requests to a server in an aim to build the entire database connection pool of the server engaged so that it blocks the legitimate requests.
  3. Protocol-based: Unlike volume-based attacks, protocol attacks directly to consume server resources instead of bandwidth. They also target what is known as “intermediate communication equipment,” which in easy words refers to intermediaries between the server and website, such as firewalls and load balancers.

Signs of DDoS attacks:

DDoS attacks have specific symptoms. It ranges from a virus to a slow Internet connection- it is tough to identify without professional diagnosis or network traffic monitoring and analysis. The symptoms of a DDoS include:

  • Slow access to files, either locally or remotely
  • Long-term incapability to connect a particular website
  • Internet disconnection
  • Problems retrieving all websites
  • An excessive amount of spam emails

What is the impact of DDoS attacks?

impact of ddos attack

How to mitigate these attacks?

Before your website crashes and goes offline entirely and you have tried all other possibilities, then it could be a DDoS attack and to defend your site against such attacks, here are some steps:

  • Observe your website activity:

Monitor your network activity precisely so you can perceive when anything is amiss.

  • Enhance your website capacity:

Have an ample capacity to bear the load and improve performance during spikes.

  • Utilize a Web Application Firewall:

Firewalls and routers should be configured to dismiss fraudulent traffic and it is advisable to keep your routers and firewalls updated and restored with the security patches.

  • Inspect artificial intelligence to route Internet traffic:

The systems that can promptly route Internet traffic to the cloud, where it’s scrutinized and malicious web traffic can be intercepted before it reaches a company’s computers.

At DE-CIX Frankfurt provides DE-CIX’s GlobePEER Remote service, you can announce Blackholes at remote DE-CIX Internet Exchanges.  As a result, traffic is dropped closer to the source of the DDoS traffic creation. Dropping DDoS traffic closer to the source of origin takes the load off your backbones and network, so your peering and transit connections are unburdened. This reduces operational complexity and saves money.

Benefits of using remote Blackholing:

  • DDoS traffic is dropped closer to the source
  • Your backbones and network are relieved of DDoS traffic
  • Transit and peering connections closer to your service region are unburdened
  • Attack volumes and collateral damage in your service region are reduced
  • The operational complexity of mitigating DDoS attacks is reduced
  • Money is saved

Conclusion:

DDoS Attack is an assault on availability in the pool of services which has repercussion on monetary losses, loss of company stature, and intrusion in the work environment. The complication is that the reliability on technologies like firewall, routers, etc are very fragile to block DDoS as it cannot differentiate between genuine and fake traffic. To compete with DDoS, a one-way attempt cannot prevent or overcome it, it needs all-round help to approach it.

For How Long Will The Internet Hold Firm?

The digital divide must be eliminated so that all communities can in future unlock access to information, digital communication tools, and digital content in general.

Crisis and disaster can barge in anytime, bringing catastrophe and disruptions to our lives. India is high on the disaster ranking list. According to India’s National Policy on Disaster Management, almost 59 per cent of India’s landmass is prone to earthquakes; over 12 per cent of the land to floods; about 76 per cent of the coastline to cyclones and tsunamis; with droughts, landslides and avalanches close behind.

Statistically, according to the United Nations Office for Disaster Risk Reduction, between 2009 and 2019, the country experienced 321 incidences of natural disasters, leaving 108 crore people affected. 2020, the year of the coronavirus, changed the way people carried out business, ran errands, socially connected, and at the most basic level, lived everyday life – after which, 2021 began with the Uttarakhand calamity.

Emergency reaction and relief team activities require assimilation of information that is synced and can be distributed to the public accurately and immediately. But the destruction to a country’s vital infrastructure – such as roads, power lines, radio towers, transportation etc. – brought about by natural calamities retards crucial communication, in turn obstructing rescue efforts. One crucial saving grace in these hostile conditions is the global digital infrastructure consisting of terrestrial and mobile networks, data centers, Internet Exchanges, undersea cables and satellites that deliver the global Internet to all of us.

Crises don’t just change our lives, they also offer a chance to re-evaluate, see things differently and make meaningful investment decisions for the future – turning these challenges into new opportunities to make life better. Digital services have become indispensable to overcoming the challenges and making a crisis manageable. Smart digital applications and solutions, physical elements of AI and IoT, the transmission of data through networks, access to cloud computing and actually access to information of any type have the potential to mitigate the impact of a crisis and are just as vital as other critical services in a crisis, sometimes even essential for survival. These require robust and high-performance digital infrastructure, everywhere.

Never before in modern times have we seen an outbreak with such a global impact as the Covid-19 pandemic. Cities, countries, and entire regions of our world were put on hold, locked in isolation. But even during global lockdowns, the Internet kept private and business life running. This enabled people to stay in contact with loved ones they couldn’t meet with; many were also able to work from home. It allowed children and students to continue with their education. It helped doctors to provide consultations and therapy via telemedicine.

Even medical researchers, who we all pinned our hopes on, used digital applications to remain in touch and share data in their efforts to understand the virus, and find a vaccine. It kept the business world alive: e.g. global supply chains for different industries remained manageable and became even more efficient, and crucial financial services were delivered globally thanks to digital solutions. Therefore, one answer to some of the challenges posed by the Covid-19 pandemic – and the modern world in general – is sophisticated digital infrastructure.

In a globalised world, economic growth and the development of societies in most regions is now based on digital communication and digital services, which depend on the underlying digital infrastructure. The use of smart digital applications and solutions will make people’s lives better.

The quality of crisis management in regions with solid, reliable digital infrastructure provides a stark contrast to those regions of the globe that remain underserved. People and companies from the latter regions have disadvantages that can last for decades. Thus, the digital divide must be eliminated so that all communities can in future unlock access to information, digital communication tools, and digital content in general.

Different stakeholders, including governments, investment policy makers, and the Internet industry itself must take as a high-priority mandate the goal of creating a minimum level of robust digital infrastructure everywhere. This century is presenting us with global challenges, but these can be transformed into opportunities by people and businesses. Digitalisation – relying on robust digital infrastructure – everywhere will allow us to minimise the impact on people and business as much as possible in any crises ahead of us. It will not only enhance the way we manage upcoming crises, but will also enable us to live better lives in the future. This is why, in times of lockdown and the immobility that comes with crises, the world needs a full digital unlocking!

– Ivo Ivanov, CEO, DE-CIX Global