DE-CIX celebrates its 25th anniversary

DE-CIX celebrates its 25th anniversary

 

The world’s leading Internet Exchange operator DE-CIX celebrates a quarter of a century of Internet history “Made in Germany” this year. 1995 heralded the birth of DE-CIX (German Commercial Internet Exchange) in the old post office in the Gutleut quarter of Frankfurt. This was the moment when three Internet service providers – MAZ from Hamburg, EUnet from Dortmund, and XLink from Karlsruhe – connected their networks. The aim was to promote global digital interconnection and establish efficient and cost-neutral data exchange via Internet Exchanges. Today, DE-CIX – with over 20 locations in Europe, the Middle East, Asia, and North America – is an important element of the global interconnection infrastructure, and  DE-CIX Frankfurt is the largest Internet exchange in the world. 

“Back in 1995, Frankfurt was already the telecommunications capital of Germany, and in the meantime it has developed into Europe’s largest Internet hub. In the mid-nineties, data streams between different providers had to cross the Atlantic twice – even if the sender and recipient were actually only a few kilometers apart. With the idea of the interconnection of networks, we were dead right. DE-CIX was in the right place at the right time, because high-speed information exchange was exactly what we could offer our customers. It heralded the birth of a world-wide success model,” DE-CIX CEO Harald A. Summa recalls the early days.

From then until today: Technical innovations during live operations

The technological progress at DE-CIX can be seen, among other things, in the development of the speed of data transmission. 25 years ago, the standard connection to DE-CIX was still 10 Mbit/s via Ethernet. Today, this has increased by a factor of ten thousand to 100 Gbit/s, and thanks to the DE-CIX Apollon platform up to 400 Gbit/s is even possible today in DE-CIX in Frankfurt. Today, DE-CIX in Frankfurt achieves peaks of up to 8.1 Terabits per second data throughput. There is no Internet Exchange (IX) in the world where more data is exchanged.

In the meantime, DE-CIX uses patch robots in the data centers in order to connect customers. One initial success story for these robots – to date the only ones of their kind in the world – was the largest migration in the company’s history. “In 2018, we achieved an important milestone with the new location in the Kleyerstrasse Campus in Frankfurt,” Harald Summa reports. “It was an enormous migration of over 450 customers during live operations – equivalent to open-heart surgery”. Through the use of the robots, a port can be provisioned in just a few minutes, without the need for a technician to actually be physically present. During the migration, a total of more than 15 kilometers of fiber-optic cable were laid.

From Frankfurt to the world – the international expansion of the DE-CIX success model

In parallel to the expansion of DE-CIX in Frankfurt to further locations and the expansion of further Internet Exchanges in Germany, DE-CIX opened its first international Internet Exchange, UAE-IX in Dubai, in 2012. With that, the starting gun was fired for rapid expansion, which experienced another highlight in 2015 with the setting up of DE-CIX New York. “We brought our trailblazing model into the US market filled with motivation and passion. The fact that today we are already the largest neutral Internet Exchange in the New York metropolitan region has exceeded our expectations,” Ivo A. Ivanov, CEO DE-CIX International, reminisces. The international expansion continued in 2016 with DE-CIX Madrid, the fastest-growing IX in the world. With the opening of interconnection hubs in Mumbai, Chennai, Kolkata, and Delhi, the company enjoyed an exceptionally successful entry into the Indian market in 2018, followed in 2019 by entering South East Asia, with DE-CIX Malaysia. Today, DE-CIX operates more than 20 IXs in Europe, the Middle East, India, South East Asia, and North America, with close to 1900 connected networks from over 100 countries.

The Digital Triangle: 5G, artificial intelligence and IoT as drivers of digitalization

As a result of the continuing digital transformation of companies, the migration of data and processing workloads to the cloud, streaming content in higher and higher resolution, and new technology areas like 5G, artificial intelligence, and the Internet of Things, data traffic is currently growing massively. What is especially important for future-oriented technologies is the lowest possible latency, and having the data close to the customer. “Here, it is more about quality than volume. The more local the set-up, the shorter the data packet transit times are. Our goal is to further improve the Internet ecosystem, and to simplify access to it,” says Ivo A. Ivanov.

DE-CIX is working on the development of solutions based on the consideration of the three key factors 5G, AI and IoT. “Software-defined Internet Exchanges may well be a solution not only to fulfill these requirements efficiently and rapidly, but also to enable fast and inexpensive expansion of the interconnection sector with less dependency on hardware. Software-defined infrastructures will also bring more growth and encourage greater productivity. The DE-CIX success story will continue,” Ivanov concludes.

Detailed content relating to DE-CIX’s first 25 years can be found on the anniversary website. The content is presented with the support of our partners Interxion, Angola Cables, Axians, Nokia, Itenos and Telemaxx.

A selection of the biggest moments in the history of DE-CIX and the Internet can be found here.

# # #

The role of data centers in an interconnected world

 

From storage evolution to digital revolution

“Internet Exchange Points,” comments  Gabriel Willigens, Head of the Business Unit DataLogistIX at Itenos, “live in data centers.” There’s a good reason for this: that’s where data lives. Today, data centers are the warehouses of the digital economy, providing a home not only for the data itself, but also for the platforms and applications that have become so ubiquitous in the modern world. And central to the seamless functioning of these applications and delivery of content is interconnection – which is why IXs like DE-CIX also make themselves at home in highly interconnected data centers in order to nurture digital ecosystems there.

But clearly, it hasn’t always been like that. Prehistoric data centers (those that existed long before anyone even thought of coining terms like “digital native”) were computer rooms located in company office space, housing – seen in retrospect – massively oversized and underpowered computers, and connected to nobody and nothing outside of the premises. It was a combination of the evolution of computing technology (not only miniaturization and transistor density, but also the capacity for computer resources to be shared amongst multiple users) and the increasing desire to connect networks with each other which together spawned the commercial Internet. With this, a new type of dedicated data center facility developed, along with new business cases for their operators. And so began the business of colocation – without which the Internet as it is could never have developed.

The co-dependent development of the Internet and data centers

To gain access to the Internet – today, as it was back then – connectivity is an essential precondition. In the mid-90s, with the advent of the World Wide Web, networks outside of the USA still needed to connect directly with the American backbone in order to access the new-fangled Internet. “An e-mail from one ISP to the other went to Washington and came back on the same line to be delivered to the provider next door. This was of course very expensive – a 2-Mbit direct route to US was a big thing. It was a privilege to have such a line, but costs were too high,” Harald A. Summa reminisces about the early days.

When DE-CIX first connected networks in Germany back in 1995, the first data center where the networks housed their networking equipment was a computer room in a disused post office in Frankfurt. But while connecting the first three German networks could be handled in such a space, it became necessary for the fledgling Internet Exchange to move to a dedicated colocation facility, as more and more networks wanted to connect their servers locally as well – so in 1999, DE-CIX moved to Interxion’s first Frankfurt data center, FRA 1. This was the beginning of a strong and mutually beneficial friendship, without which the Internet would not be what it is today.

The pioneering spirit of interconnection – no limits

Coming up to the turn of the millennium was a time of enormous growth in the market of data center services – companies that wanted to connect to the Internet but did not want to invest in their own in-house infrastructure began placing their servers in already functioning data centers, where the facilities could be shared between all tenants. The more companies and networks that accumulated within these data centers, the more attractive they became for other companies and networks to interconnect with. Digital ecosystems began to evolve, and the colocation market boomed. As Gerd Simon, at the time the Managing Director of Interxion in Germany, explains, “The mood was very energetic back then, there was a pioneering spirit – everything was possible. There were no limits. Everyone was looking for possibilities to develop their business, and looking for conversation and business partners in order to do that.”

Using DE-CIX as a way of then interconnecting networks not only within a building, but also between data centers, became a success story for the digital hub of Frankfurt – which has developed into one of the areas with the largest data center density anywhere in Europe.

Getting closer to the edge and increasingly interconnected

Certainly, the development of the colocation business model was not without its hiccups. With the bursting of the dotcom bubble in the early 2000s, these once flourishing colocation facilities emptied – the yawning white space in limbo as it waited for the hoped-for recovery. And bounce back it did; slowly at first, but with the emergence of the iPhone in 2007, a new form of Internet access demanded increasing infrastructure to feed a new generation of services to a willing world. Offering services for an increasingly mobile end user meant that networks needed to get closer to the user. This meant that networks needed to be connected with more data centers, and data centers needed to be connected with each other – and this needed to be done on both a global and a local scale.

The Internet was, after all, a global phenomenon. Local connectivity became the enabler for access to the world. Connecting to an Internet Exchange like DE-CIX functioned as a portal to the entire globe – it brought businesses to users, but it also brought users to these businesses.

From a refurbished office space to virtual infrastructure

From a couple of servers in a stand-alone rack, to containers for building modular data centers, through to purpose-built data centers offering managed IT services to SMEs, on to large colocation facilities with around 10,000 square meters of white space (equivalent of nearly 2 football fields filled with racks of servers); and onwards and upwards to major data center campuses and hyperscaler data centers offering upwards of a million square meters of computing space (in which, for example, the major platform providers and cloud service providers run their services). The variety of sizes, designs, and purposes that all fall under the term “data center” almost belies definition.

Datacenter-infographic-decix

And going beyond these, data centers are taking on new conceptual forms. On the one hand, there are several initiatives seeking to federate a wide variety of data centers and services to create a virtual, open, neutral, and distributed cross-border infrastructure. In so doing, quality assurance and compliance requirements are being addressed, to enable customers simplified and secure control over their processes and their own data in the cloud, as well as data governance and interoperability, to gain the necessary flexibility for emerging digital services like AI. One example of such an initiative is the European project GAIA-X.

On the other hand, we see the emergence of edge data centers – highly localized, miniaturized processing capabilities to provide almost real-time responses and so enabling scenarios like autonomous transportation. Thus, the concept of the data center has always evolved alongside its potential to be used for the coming generations of digital services and digital business.

In the evolution of the data center as a building – from an office space in the early days, to refurbished commercial space, to purpose-built buildings, to modular containers on the one hand and hyperscalers on the other, and through to the minimalistic concepts now evolving in the edge data center space – land has also played a key role. Property owners and developers even in the late 1990s began to realize that a building with connectivity was more valuable for companies wanting to get online. Connectivity started to become a defining element of commercial property, and with this, digital had begun to have a real and lasting impact on the analog world.

The data center as mission-critical for companies, the cloud, and the Internet

By the second decade of the digital millennium, demand for data center space had developed radically, and data center operators realized that refurbished standard buildings no longer offered them what they needed to provide a modern service. Concepts like security, accessibility, and reliability were becoming business critical for their customers – from startups to global enterprises – and therefore also for the data centers themselves. So a new industry developed in the design and construction of new, purpose-built data centers.

In the early 2010s, the data center industry began a process of professionalization. Designs began to offer fail-safes against potential down-time and single points of failure, and classification systems began to offer potential customers a rating system on which to base their IT outsourcing decisions. Designs ensured redundancy in terms of connectivity and power. Sites were chosen for their proximity to other networks, to fiber, to power stations, and for their distance from geographical, environmental, and structural dangers.

This last point hinges on the fact that the analog world can also have a significant impact on the digital world. Jens Prautzsch, Managing Director of Interxion in Germany, describes it thus: “If you enter a data center, go past the security, into the data rooms, you feel the heat, you feel the noise, and you think, wow, what is in there? And then if you have in mind all the services, the customers that are in there, the systems and platforms that are running there, you feel the responsibility. You understand how important it is that we do a great job.”

decix-infographic

 

Exploring the edges

The more interconnected data centers operating within close proximity to one another, the greater the interconnectivity gravity becomes, attracting more and more data center operators to build nearby, bringing more and more networks that want to access and participate in the increasingly dense ecosystems of digital hubs. The mushrooming interconnectivity in Frankfurt, for example, nicely illustrates the profound effect that digitalization has been having on our world for the last two decades. Without these ecosystems of data centers, the networks connected to them, and Internet Exchanges like those from DE-CIX interconnecting them, the Internet would not, and could not, have developed as it has.

The data center landscape of the future

So, where is the data center heading now? Well, probably in as many different directions as there are data center concepts today. The edge is a whole new territory to be explored, to be populated with sensors and processors and connected to fog and cloud computing solutions for further processing and storage. Looking in another direction, data center designers and hardware manufacturers have been engaged in an ongoing process of increasing energy efficiency – a trend which is set to continue well into the new decade. Here, not only is the infrastructure being designed to consume less power, and the heat generated in the data centers is being redirected into local heating networks, but data centers are being designed to operate in climatically opportune, but thoroughly unexpected places. Take, for example, mines, churches, or even underwater locations.

Whatever the future of data centers and the Internet as a whole may bring, DE-CIX will be there, together with our many data center and connectivity partners all over the world, providing the portal to the next generations of interconnection. Without these valued data center and connectivity partners – providing access to DE-CIX in more than 500 data centers, in over 80 countries, across four continents – without you, DE-CIX would not have a story to tell.

 

Peering Vs IP Transit

The Internet means the interconnection of computer networks which is connected by a group of servers and networks the same way cities and towns are connected by roads and highways, all the networks on the Internet need some way to communicate. The two types of interconnection that exists are “IP Transit” and “Peering”.

IP transit: The term “transit” means the transportation of systems from one place to another. In networking, a large amount of data flows from one network to another. For example, it can be similar to the water pipe inside the wall that says ‘Internet this way’.

Peering: Peering is a process by which two Internet networks connect and exchange traffic to distribute traffic to each other’s customers without having to pay a third party to carry that traffic across the Internet for them. The routing protocol that allows peering between ISPs is Border Gateway Protocol (BGP), which is free and benefits all ISPs.

The difference between the two is when an organization connects to an ISP with the motive of accessing the whole internet, it is known as IP transit. It should not be jumbled up with connecting to an ISP over border gateway protocol (BGP) peering, peering is only for an organization’s prefixes and their directly connected peer.

Different levels of ISPs:

Numerous ISPs that operate within a city/town. The internet that we access at home is provided by Tier-3 ISPs. These are the most basic level of ISPs are subject to a limited area. ISPs that cover large population-based areas are Tier-2 ISPs and can cover the whole state or an entire country. Tier-1 ISPs are in-charge for global internet connectivity. These ISPs have non-disclosure agreements with each other for the transit of data. These may include the amount of data to be exchanged, the use of the equipment among others.

Tier -1: The Tier-1 ISP is a transit free network. They do not pay for internet transit as they are the transit providers. ISPs of different ranks pay them if they want to acquire internet transit services.

Tier -2: The Tier-2 ISP networks remunerate for internet transit to Tier-1 ISP to acquire some features of the internet. They then provide internet services to Tier-3 ISPs. These ISPs also have an arrangement for internet sharing with each other called peering.

Tier-3: The Tier-3 ISPs are at the lowest of the hierarchy and have to pay for transit as well as peering services.

To choose IP Transit or Peering?

The major difference between IP Transit and Peering is the tariff. While obtaining services from a transit service provider we need to reimburse the traffic settlement costs. But in peering the cost is negligible as the exchange of data is shared. The cost involved in peering is due to equipment, tools and power utilization among others.

Talking about IP transit, an SLA (Service Level Agreement) between the ISP and the transit provider is signed. The SLA states an agreement linking the two parties where the transit provider has to provide certain services to the ISP at a pre-defined charge.

Conclusion:

ISPs have an option of either peering with other networks or purchase IP Transit. On the other hand, some ISPs operate on both services – it is general for a large quantity of an ISP’s traffic requirement to be met through the use of IP Transit, and increased by peering where the conditions are satisfied.

How to get maximum benefits of Peering

Peering is a process by which two Internet networks connect and exchange traffic to distribute traffic to each other’s customers without having to pay a third party to carry that traffic across the Internet for them. The routing protocol that allows peering between ISPs is Border Gateway Protocol (BGP), which is free and benefits all ISPs.

Below are top five ways to get the maximum benefits of Peering.

Optimize your routing data base entry Please make sure that you:

? have your routing data in just one routing database like IRINN, TRAI, etc. (unless you are a global player)

? have all used prefixes covered by one correct database entry, matching the ASN which they come from (more-specifics need dedicated entries too)

? have all active own and customer ASNs and AS-SETs listed in your main AS-SET – and remove unused ones

Use the route servers (2 session’s IPv4, 2 sessions IPv6

The route servers help you to get the majority of possible sessions. It will help you to avoid extra work to configure all the new arriving members.

Verify your prefix amounts and details

Please verify via the route server looking glass whether the route server accepts all of your sent prefixes. If you see a difference, most probably you have not specified the right AS-SET during turn-up or you have missing or wrong routing database entries.

Keep your PeeringDB entry up to date

Please update your PeeringDB record or create a record if you have none yet.

https://www.peeringdb.com/ is the tool for all peering administrators.

You can refer to the article here for benefits and importance of having updated peeringDB account in Hindi.

Go for direct sessions to members who are not on the route server and with large or important networks

Not everybody peers with the route server. And not everybody who peers with the route server sends or imports prefixes. Check on the looking glass who is not present at the route server (session down, zero prefixes) and ask them for a direct session.

Route Server Peering helps new peers to exchanges traffic with other peers from day one over the shared fabric.

Many of the very large operators or CDNs send more prefixes via a direct session and/or give you more priority and traffic engineering focus on direct sessions. Examples are: Akamai, Google, Microsoft etc. Some large CDNs like e.g. Limelight are, in general, not present at route servers. So have an eye on such important players too.

The same is true for your individually important partner networks. Secure your traffic path to all those who are important for you with direct sessions.

The top five points described above are based on DE-CIX’s whitepaper on 10 useful tips on how to maximize the benefits of peering. The white paper can be downloaded here

Why the Internet holds firm: Internet infrastructure in times of COVID-19

The role of the network of subnetworks, once established for research purposes and now known as the internet, has evolved within a few decades into an omnipresent communication and commercial ecosystem. At the end of 2018, more than 50 per cent of the world’s population, 3.9 billion people from all countries of the world, were using the internet – and the trend is growing. According to a Cisco forecast, by 2023 there will be 29.3 billion devices worldwide connected to the internet (or 3.6 devices for every person on the planet), which will send and receive a total of 1,209 terabits per second (Tbps) of internet traffic at peak times – the equivalent of about 48 million parallel Netflix 4K streams. According to these estimates, the data traffic of the future will therefore assume enormous proportions.

COVID-19 is changing the use of the internet – is the internet reaching its limits?

The major role the internet now plays in our society is something we are becoming increasingly aware of – especially these days, in the wake of the COVID-19 crisis. Overnight, people were sent to work from home. We started using the internet to stay in touch with friends and colleagues via video telephony. Small clubs that had previously only had a website began to use streaming to broadcast training sessions, and apart from that, the internet is simply a source of entertainment in the form of online computer games or video streaming.

As a result of these changes, a significant increase in data traffic has been recorded at various observation points on the internet in recent weeks. internet traffic transmitted at peak times grew by more than 10 per cent- 20 per cent. In particular, the data traffic for services that are needed for working from home, such as Skype or Zoom, has increased in some cases by up to 100 per cent. Online and cloud gaming traffic has increased by 50 per cent.

In view of these significant changes in our internet usage behavior, the following questions arise: How much short-term growth can the internet actually sustain, and what are the limiting factors? The open internet architecture was, over 50 years ago, initially conceived with important design decisions, such as the technological independence of the individual subnetworks, best-effort packet switching, and no global control. In detail, of course, the internet and all the technologies involved have undergone enormous development – but many of the basic protocols and concepts (such as IP, BGP and TCP) have mostly only been extended in important details. The totality of these decisions is the basis for the phenomenal growth of the internet over the last few decades. Therefore, it can easily handle short-term increases in data traffic, as we are currently seeing.

 

Subnetworks ensure stability

In a simplified representation, the structure of the internet consists of three different types of subnetworks, each of which represents administrative domains and can thus be directly assigned to individual companies:

End-user networks i.e. those subnetworks that provide broadband connections such as DSL, UMTS/LTE or cable providers, transport networks which in simple terms represent all networks between the end-customer network and the network providing the service, and service provider networks, from where services are transmitted, often known as content delivery networks, or CDNs. In order to be able to consume a video stream, a request from the user is sent to a server of the provider. The data packet is first transported in the end-user network (at the user’s end) to a transfer point, where it is either transferred to a transport network or directly to the network providing the service. These transfer points include internet Exchanges. If a transport network is connected in between, this ensures delivery through its global backbone.

In a crisis such as the current one, bottlenecks can arise in all these networks due to a sharp increase in data traffic. The limiting factor in the end-user network may, for example, be the connection capacity of the DSL connection, and thus end-user network operators must maintain sufficient capacity within their network to transport the necessary data traffic from households or offices through the end-user networks to the transfer points, and from there to other networks.

In order to prevent limited data traffic at the end user, not all content in today’s modern internet is transported directly from the respective CDN servers to the end customer. Frequently, popular content is already made available on servers that are located directly in the end-user network. For example, a popular new film offered on streaming platforms only has to be transferred once to what is known as a cache server in the end-user network – this applies to up to 50 per cent of cases today. For the final delivery to the customers, the network capacity must still be kept available at the end customer’s end, but this offers considerable potential savings at the network gateways.

Network gateways as bottlenecks

Potential bottlenecks can also occur at the network gateways. This refers to the critical links and transfer points between the individual subnetworks which unite the entire ecosystem of networks within the internet. These network gateways that can experience bottlenecks if they are not sufficiently upgraded, thus limiting the availability of services in the face of explosive growth in data traffic.

The exchange platforms of Internet Exchanges, for example, offer sufficient capacity on a continuous basis and are generally only used at around 50 per cent capacity. Consequently, the connections of the participating subnetworks, which exchange their data traffic at the Internet Exchange, are the limiting factor here. If more data traffic is to flow from all subnetworks connected to the Internet Exchange to another subnetwork than the latter has access capacity at the Internet Exchange, part of the data traffic is inevitably discarded. Typical connection capacities allow transmission rates of 1 Gbps, 10 Gbps, 100 Gbps or even 400 Gbps, which can be increased or combined as desired.

In addition to considering the service provider network itself and the connection capacity at network transitions such as an Internet Exchange, service providers must of course also maintain sufficient server infrastructure to cope with the current increase in usage. It also makes sense to bring the corresponding servers closer to the end customers.

 

The internet will hold, but for how long?

Overall, from a technological point of view, the internet can withstand the onslaught of recent weeks extremely well, both in the end-user networks and especially at the transfer points. Not least because over the past few years there has already been considerable global growth in worldwide data traffic, and the internet industry has now only had to absorb anticipated short-term growth.

One can therefore speak of accelerated digitalisation, also with regard to developments in working from home or virtual events.Across the board, people were forced to work from home, which established that working virtually works well and can be integrated more often than before the crisis, if necessary, even beyond the COVID-19 measures. Virtual events are also currently experiencing a great upswing. Although the digital alternatives cannot completely replace personal contact, there are many successful online formats that offer participants a high-quality event and can save them, at the very least, a long journey.

In the medium to long term, there may be challenges for the entire internet infrastructure, ones that any other industries will also face. Due to the restriction of freedom of movement, maintenance or upgrading of the devices in data centers cannot always take place as planned. This is not a problem in the short term, since on the one hand, sufficient reserves are available at all times, and on the other hand, automation in data centers is to some extent quite advanced.

However, if the current situation continues for further months, the point at which action is urgently needed may be reached. With regard to the supply chains of the hardware used, for example, there could be delays in delivery. Routers, switches or optical equipment is mainly manufactured in the Asia. As these devices are subject to constant physical stress when in use, they will have to be replaced sooner or later, although the typical cycles for this can be measured in years – and a crisis lasting for years, including delayed deliveries, is rather unlikely.

The bottom line: The virus as a driver of digitalisation

One thing is clear from the current situation: The internet’s holding firm! Even during such phases of maximum load as a global shutdown. However, during the global pandemic, some weaknesses in the digital infrastructure have also emerged, some of which can be felt directly by the user, or will be felt in the long term. Whether it is a question of the challenges in the subnetworks of the internet, at the network gateways, or in the last mile; ultimately it is the responsibility of the respective operators to maintain sufficient capacities and to expand them in a forward-looking manner as necessary.

Now, in the unexpected current crisis, this has to happen faster than planned and across the board. This in turn greatly accelerates digitalisation, with the Corona Virus pandemic as an extremely unusual driver. Disruptive technologies, such as 5G, will accelerate the challenges and demands on “the network”. Only if all participants in internet infrastructure work well in their own way, drive innovation, and show themselves to be unfailingly reliable, will the network of subnetworks, once established – decades ago – for research purposes, be able to meet people’s needs in the future.

 

The five star hotel experience will start at the datacentre

Ivo Ivanov, CEO of DE-CIX global speaks about what technology can do for the hospitality industry in the near future.

It has taken the pandemic for the hospitality industry to realise the true potential of technology and the virtual world when it comes to business. ETHospitalityWorld spoke with Ivo Ivanov, the Germany-based CEO of DE-CIX (pronounced dee-kicks) Global— the largest internet exchange in the world.

“DE-CIX operates platforms, for interconnection of different types of networks, cloud networks, content networks like TV streaming networks, video on demand networks, collaborative work applications, networks, of course, gaming networks, as well as all of the excess networks, like 5g networks, small ISP, and fiber. We have started to see a new type of participants on the different platforms, mainly enterprises,” Ivanov said, explaining what his company does.

Ivanov firmly believed that the hospitality industry would benefit from digitization in the future extremely well, for which they would need to do the right homework to be able to create the right balance. Benefiting from digitalisation would also require getting involved into infrastructure. And this is where his company would be of use.

“We offer different services on the platform which have something in common—the direct interconnection between the application and the hospitality organisation network. Without intermediate without any hubs. This reduces the latency dramatically. If we talk about applications, like live streaming, virtual or augmented reality applications, they’re so sensitive on the performance side, they don’t like huge latency, they want to be extremely performable is the physical interaction on the traffic flow is very solid and stable in this requires the shortest path, and we deliver the fabric solution for this path.

“It’s also about security. The more direct the interconnection is between the application between the cloud computing instance, between the traffic delivery source and the hospitality network at the other end, the lower the risk for attacks, the lower the risk for men in the middle, IP hijacking and so on,” he explained.

The potential for what the hospitality industry could do using virtual tools was immense, he said, “The hospitality business is a very physical one. To be honest, you cannot enjoy a digital swimming pool. People want to swim—but the hospitality company can digitally influence this decision of the guests. Virtualizing the selection of different hotels in advance, giving the potential guest, a chance to experience the features of a hotel resort as well as use it to stay in touch with them are advantageous,” he said adding that both virtual as well as augmented reality platforms require solid infrastructure, which is something that needs to be invested in.

“I love to say that in the future, the experience of the five-star hotel will start in the datacenter—will start in our fabric using the solid infrastructure. Because as the hospitality companies want to impress the guests, they will want to start this in advance in the digital world,” he concluded.

‘India needs to scale up investments to improve Internet access in rural areas’ – Ivo Ivanov, the CEO of DE-CIX International

Ivo Ivanov, the CEO of DE-CIX International, one of the largest Internet Exchanges in the world, talks about the infrastructure India needs to ensure that everyone in the country has access to the Internet.

Internet has become the backbone of everyday life in India. Be it access to ration or getting vaccinated against the Covid-19 virus, online has become the new normal. Yet, the country still has a long way to go before the technology reaches to all. Ivo Ivanov, CEO of DE-CIX International, one of the largest Internet Exchanges in the world, talks about the infrastructure India needs to ensure everyone has access to the Internet.

 

Does India have the required infrastructure necessary for handling the internet traffic that the present situation asks for? What kind of investment do you feel is necessary to make India’s internet seamless?

India’s Internet infrastructure has significantly improved, and the pandemic has been a prime factor for this transformation. Nevertheless, it is quite clear that the geographical density of Internet infrastructure must be increased. While there are already hundreds of millions of Indians using the Internet, not even 30% of rural India has access. This needs to change. More investment is required in the whole array of digital infrastructure and connectivity options — there is a need for more fibre and mobile connectivity, connecting the rural regions, as well as developing edge connectivity.

The adoption of technologies like 5G and Wifi-6 is very important for economic development as it enables businesses to fully exploit the advantages of the digital economy. Added to this, there is a need for greater investment in the construction of data centres so that digital content, applications, and cloud services can be housed as close to the users as possible. Besides these, the establishment of connectivity to LEO satellites can bring the Internet to places that fibre and mobile networks can’t get to.

India can expand its role in the global market by scaling up investments in physical infrastructure and investing in the collaboration of local and global entrepreneurs, like digital information technology services, including big data, Internet of Things, and analytics. All of the digital infrastructures also need to be interconnected via high-performance Internet Exchanges to share data at the local level and allow data to flow, reducing the distance data needs to travel and therefore improving the performance of the applications and content.

At the start of the pandemic, we saw companies scrambling to increase the data plan. Is there a supply-demand mismatch in India at this moment?

The rising demand in Internet traffic we saw last year due to the pandemic, while remarkable in its scale, could be absorbed easily and smoothly and without concerns at the DE-CIX IXs.

We saw peak traffic records broken at our IXs in India during 2020. At DE-CIX India, from February 2020 to February 2021, we saw significant growth in different segments of data traffic, reflecting the needs of people during a lockdown —keeping in touch with others, entertainment, and access the cloud and virtual offices. OTT and VOD traffic also grew very strongly, followed by gaming and ISP. Then CDN and Social and Online Media traffic grew by almost the same scale, whereas hosting traffic, bringing up the rear, nonetheless showed a strong rise.

There is a gap in customer expectations, especially from work-from-home perspective. Many organizations struggle to keep up with the demand of their staff. As such, the sudden increase in network usage was not expected and the existing company infrastructure was not built accordingly. But, the Internet infrastructure itself was and is capable of absorbing the increase in data traffic experienced in India throughout the pandemic.

 

As you mentioned that the cyclone has affected the exchanges. With extreme weather conditions becoming common is India, is it possible of shielding the network from vagaries of nature?

Too often, when there isn’t enough infrastructure in place, be it railroads, bridges, or digital infrastructure, a region becomes vulnerable to single points of failure which can have an impact also further afield.

Therefore, there is great value in having distributed infrastructure — meaning that if multiple networks cover a region, then they can interconnect with each other locally to create more resilient paths for data to travel from point A to point B. It is important to have several ways to route around an area that is affected, for example, by storm damage, to make sure that other areas are not also impacted.

This is why we have our interconnection infrastructure in India distributed across 15 data centres providing both greater geographical density and locational redundancy. Having a range of infrastructure providers — network operators, Internet service providers, data centre operators, etc. — interconnected via an IX increases the resilience of the Internet.

By connecting to DE-CIX, these infrastructure providers and their customers benefit from the largest carrier and data centre neutral ecosystem in India. As a result, India is becoming increasingly capable of withstanding challenging conditions, but certainly, there is still work to be done. The pandemic has made organizations very well aware of the importance of state-of-the-art infrastructure and the need to be well equipped for extreme weather conditions.

Internet is the backbone of everything in India. But we still get to hear of dark areas where the network fails. As a service provider, what’s your analysis of this?

As a provider of interconnection services, we do not operate backbone or data centre, but partner with operators of all kinds of digital infrastructure. We are, in fact, always looking for and developing new techniques to expand the digital ecosystem both at global and local levels. I think one of the most exciting developments for India currently is the potential of LEO (Low-Earth Orbit) satellite Internet provision, which can bring remote communities online to join the global Internet.

These communities are struggling to run online businesses and gain proper access to the Internet as a result of their current connectivity solutions. These often involve copper cable networks and at most geostationary satellite connectivity, resulting in Internet speeds down to less than one megabit per second and latency (response time) as high as 400 milliseconds end-to-end.

Through its “Space-IX” Program, DE-CIX is ready to support the infrastructure needs of the whole range of space-network operators, in particular LEO satellite operators, with terrestrial interconnection, providing them with an interconnection solution that enables access to terrestrial content, cloud, and application networks. This can have a substantial impact on reducing the dark areas on the Indian map and of course, further adds to the diversity and resilience of the Indian Internet as a whole.

Tell us about your operations in India. Any investment plans or business figures you want to share

Regarding our operations, DE-CIX runs four Indian IXs in Mumbai, Kolkata, Chennai, and Delhi, interconnecting 375-plus networks in 15 PoPs, and plays home to the largest carrier and data centre-neutral ecosystem in India. The largest of these, DE-CIX Mumbai, gained the ranking late last year of the second-largest IX, based on connected networks, in the Asia Pacific region.

DE-CIX India also offers a single access port for multi-services, meaning that a single port can be used by any connected network for both interconnection services, peering, and the DirectCloud Service. DE-CIX has recently received a patent for ‘Blackholing Advanced’ in Germany as a DDoS prevention mechanism, and this will soon be available in India as well.

Overall, what we see developing at the moment is that society and businesses in India and around the globe are entering a new era of digitalization in which digital applications and services will be needed everywhere, for everyone. To ensure best performance of digital applications and services, latency needs to be minimized; meaning that digital applications need to get closer to the users because latency is the new currency.

To achieve this, the digital infrastructure that houses and transports data needs to be at the edge of the network — as close as possible to the point where the user connects to the network or where the data is being generated. DE-CIX also plans to continue expanding to new locations, together with partners, to increase the geographical density of interconnection services, and therefore bring content and applications closer to the user.

We also make it possible to order interconnection infrastructure as a managed service, a highly scalable turn-key solution that enables data centre operators and other stakeholders in India to create their own interconnection ecosystem.

Beyond this, we are constantly innovating the service portfolio, bringing tailor-made interconnection services to an ever-wider range of customers. While Internet Exchanges have traditionally been seen as locations where carriers, ISPs, content networks, and content delivery networks interconnect to exchange data, we are now seeing an increasing number of participants joining from other industry segments, like healthcare, finance, retail, logistics, entertainment (such as gaming) and of course, automotive.

This is a development that DE-CIX aims to support in order to ensure a smooth transition to a digital society and economy. Having established a Cloud Exchange in India in 2020, we have now taken our service offering to the enterprise segment further – enabling an enterprise to build a closed and secure private ecosystem, a Closed User Group (CUG), within existing DE-CIX ecosystems. In this way, the Indian enterprises can further minimize the geographical distance to the other networks – and thus optimize the latency – as well as improving security and resilience.

The Digital Triangle for Edge Interconnection

Digital is reshaping how business is done. We are at the cusp of a completely new age in global economics, with enterprises, regardless of size and heritage, redefining their activities and their sectors based on digitalization. Organizations are leveraging their digital strength to reshape their own business models and how business is done within and across entire sectors, including automotive/mobility, healthcare, finance, and media.

As they become digital, organizations are needing a new interconnection service regime customized for their needs. New and transformative technologies, like IoT, artificial intelligence, and 5G, are accelerating the pace of change in markets around the globe. These disruptive elements will serve as a “digital interconnection triangle” of future innovation, in turn creating still further interconnection needs at the edge.

The heart, hand, and brain of future innovation

Interconnection at the edge requires a new way of handling data streams, and a new way of interconnecting players within an ecosystem. The key factors that influence edge interconnection (if you will, the heart, the hand, and the brain of future innovation) are:

5G (the heart):

5G enables the management of a lot of different frequencies, and also enables the transmission of multiple data streams. Designed primarily for maintaining data from a huge number of sensors, 5G represents the foundation for the future evolution of the Internet of Things.

IoT (the hand):

IoT represents function in the digital interconnection triangle. In a 5G-enabled environment, it will be possible to connect an enormous number of devices within a physically limited space. This will open the way to digitalizing more and more currently purely mechanical processes. But managing the enormous number of sensors and data streams that will result in the Internet of Things in the future will not be possible without the support of artificial intelligence.

AI (the brain):

AI is essential in this mix in order to create the logic management and maintenance of data streams for innovative use cases and the respective ecosystem involved in the specific environment. This is the only way that the interconnection of millions of sensors in the Internet of Things can be managed efficiently. The solution is intelligently managed software-defined edge interconnection.

Each of these factors is dependent on the other two, and it is only when they are interconnected that they can drive digital evolution. The whole is greater than the sum of the parts.

Unlocking new use cases with edge interconnection

Use cases that reflect this digital interconnection triangle will be many and various, but current scenarios include connected cars and autonomous vehicles on the one hand, and Agriculture 4.0 on the other. In both of these use cases, there is the need for widescale deployment of 5G masts, including edge computing capabilities (edge data centers), and the associated fiber connectivity to local data centers and regional cloud solutions. For these use cases, IoT devices and sensors are needed both within the landscape (in the road and in the soil to measure physical conditions) and on the mobile objects (throughout cars – the car itself can be considered as a mobile edge data center – and on autonomous farm machinery or watering/fertilization systems, for example).

From this point, the masses of data that are generated by the given use case need to be intelligently sorted into, among other things: data that needs to be processed locally with extremely low latency to enable rapid response times; data that can be sent to the cloud for processing if the response times are less critical; data that needs to be accessed by specific actors (but not others) in the value chain: and data that will be stored long-term versus data that will be discarded. The list goes on…

The complexity of this demands intelligent management of the data streams

Edge interconnection – the next generation interconnection

DE-CIX is working on developing a solution based on consideration of this triangle. Software-defined Internet Exchanges may well be one of the solutions not only to serve these needs efficiently and fast, but also to enable fast and cost-efficient expansion of the interconnection industry with less dependency on hardware. SD will also both bring more dynamism and encourage greater productivity.

IoT is the edge, AI is in the edge, and 5G serves the edge: The software-defined exchange provides the solution to the forthcoming digitalization challenge – namely, the ability to operate and manage the data streams of the future.

– by Ivo A. Ivanov, CEO, DE-CIX International